Energy Management in Microgrids using Demand Response and Distributed Storage –A Multi-Agent Approach

Microgrid Symposium
Santiago, Chile
11-12, September 2013

Suryanarayana Doolla

Department of Energy Science and Engineering
Indian Institute of Technology Bombay
INDIA

Contents

- Smart Distribution Systems
- Multi Agent Systems
- Agent based energy trading
- Incorporating DR and DS in smart microgrids
- Case study
- Conclusion

Smart Distribution System

- One of the vital pillars of the smart grid technology
- * Acts as a medium of power and data exchange between customers and utilities.
 - Market prices, customer willingness to participate in DR, network operator commands etc.
- May contain large number of DERs integrated through controllable platforms called microgrids.

Smart Microgrid

- ❖ A microgrid with ability to support energy management and intelligence to behave in consistence with the smart distribution systems
- ❖ Platform to integrate DERs on the community level
- Allows customer participation in the electricity enterprise
- *An indivisible module that can be integrated into utility smart grids with less or no modifications in installed intelligence

Multi-Agent Systems

- A system with two or more agents or intelligent agents or even combination of both
- An agent is "a software or hardware entity that is placed in some environment and is able to autonomously react to the changes in that environment
- Greater scalability over quadratic programming and linear programming approaches
- Best suit for developing real-time decision making systems which are robust, flexible and extensible.
- ❖ IEEE-PES Multi Agent Systems Working Group

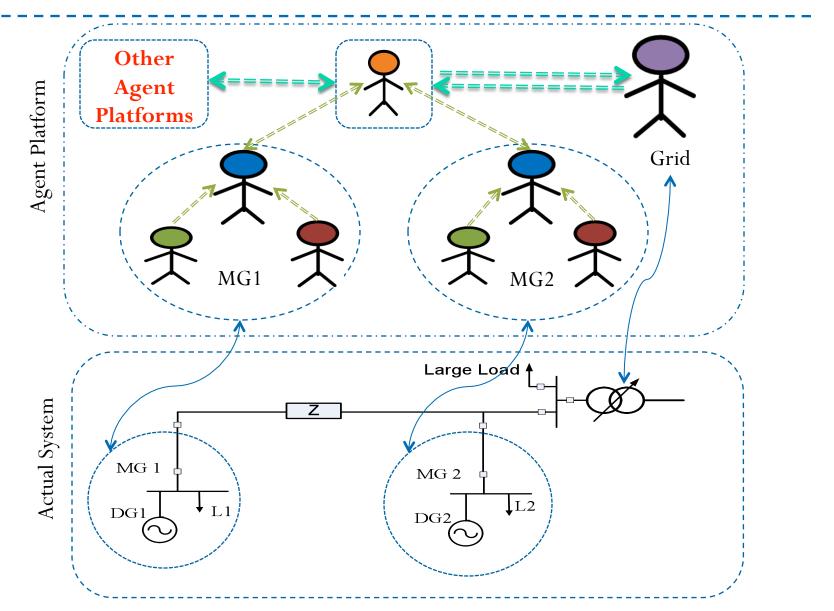
Objective of the work

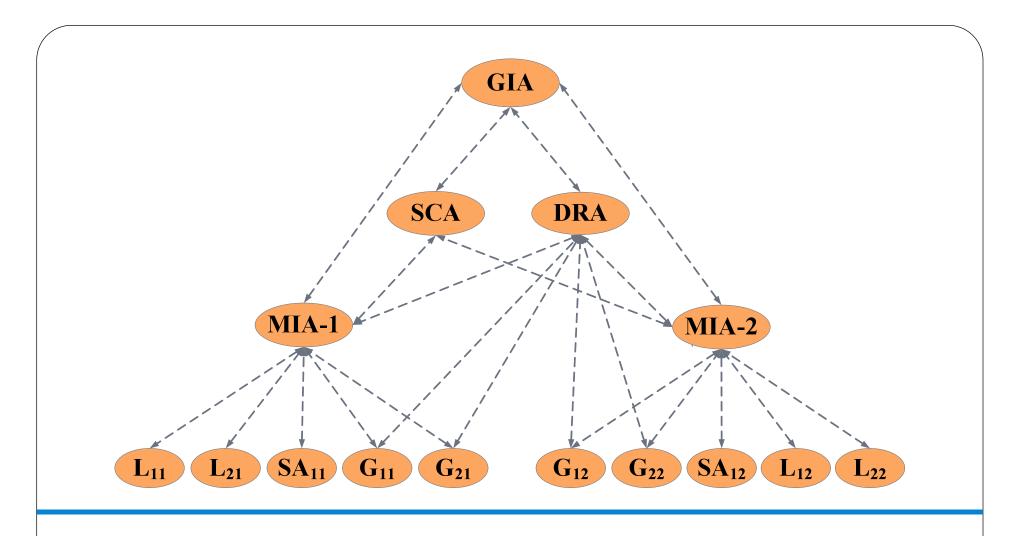
- To develop an agent based real-time energy trading cum management framework in consistent with utility smart grids
 - Allow DGs with smaller capacities connected in microgrids to trade with local customers
 - Inherent diversities in load consumption patterns
 - Storage Options
 - Encourage and fairly treat customers' participation in DR

Outline of the work

Hierarchal agent architectures

- Auction based Trading
- Developing Agents


Incorporating DSM


- Smart DR options
- Incentive Mechanisms

Incorporating Energy Storage

- Trading
- Coordinating with DR loads

Agent based Energy Trading

Hierarchal agent architecture to incorporate DR and DS

Note: L_{xy} indicates load agent number 'x' of microgrid 'y'. For example L_{21} is second load agent of microgrid-1

Incorporating DSM (DR)

- * An agent called Demand Response Agent (DRA) is added to process DR requests placed by customers by negotiating with DGs.
- * DRA initiates negotiation with DGs connected across the system with an offer price equal to the average of the market price range.
- ❖ DGs allot weights to each interval in the DR request based on the offer price and previous day transaction prices.
- DRA consolidates and finds the optimal duration to serve DR loads

Incentive mechanism

- A priority based incentive mechanism is proposed to fairly treat the customers participating in DR.
- *"Customer with high priority index will be allowed to purchase energy from markets with low cost of generation sellers."
- *Priority index is decided by the frequency and size of customer participation in DR.

Incentive mechanism

❖ Priority Index (PI):

$$PI(L_{xy}) = \frac{N}{N_{Total}} + \frac{P}{P_{Total}}; P_{Total} \neq 0 \text{ and } N_{Total} \neq 0$$

N is the number of DR participations by L_{xy} in a day

 N_{Total} is the total number of DR participations recorded in a day in the corresponding microgrid

 P_{Total} is the total load participated in DR in kW in a day

P is the total participation size of L_{xy} in a day in kW

Proposed DR option

- * The proposed DR option is suitable for the loads which does not require continuous supply of electricity for the specified amount of time to complete the job.
 - Low priority loads like, Washing machines, Dish washers etc.
- * Proposed intelligence decides the schedule for the appliances based on the comfort levels provided by the customers and supply demand relation in the system.
- * Customers shall provide staring interval (SI), dead line (DL), time required to complete the job (OT) and load size.

Incorporating Energy Storage

- * The agent architecture is upgraded with Storage Agents (SAs).
- SAs participate in market through a trading broker (SCA)
- During power deficit/surplus situations, SCA participates in global auction.
- ❖ SCA enquires the storage agents regarding the status of the energy systems.
- *The status information include and draining/filling abilities of the storage systems, and cost of the stored energy CSE.

Incorporating Energy Storage

Status of the storage systems is calculated as,

$$P_{in}(i,t) = min\left(\frac{S_{Max} - S(t-1)}{\Delta T}, P_{Max}\right)$$

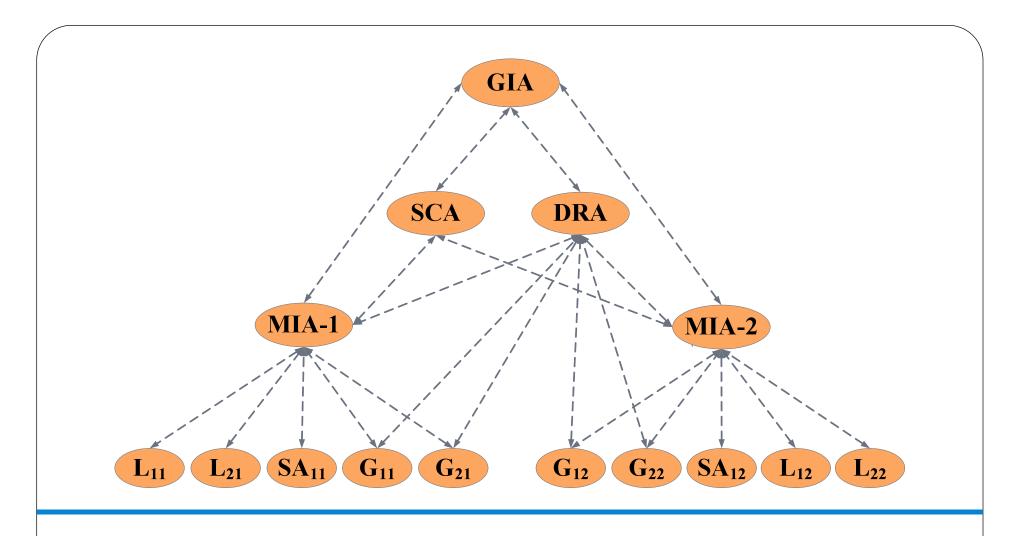
$$\frac{S(t-1) - S_{Max}}{\Delta T}$$

$$P_{out}(i, t) = min\left(\frac{S(t-1) - S_{Min}}{\Delta T}, P_{Max}\right)$$

- * S(t-1) is the status of a storage system during the interval (t-1) in kWh and is equal to $S\times(1-E\delta)$
- * S is the status of the system at the end of the most recent filling interval in kWh
- \diamond δ is the self draining factor of the storage system in kWh per hour
- ❖ E is the elapsed time from the most recent filling interval to (t-1) in hours
- * The cost of stored energy is calculated as,

$$CSE(t-1) = \frac{CSE_{Re}}{(1 - E\delta)}$$

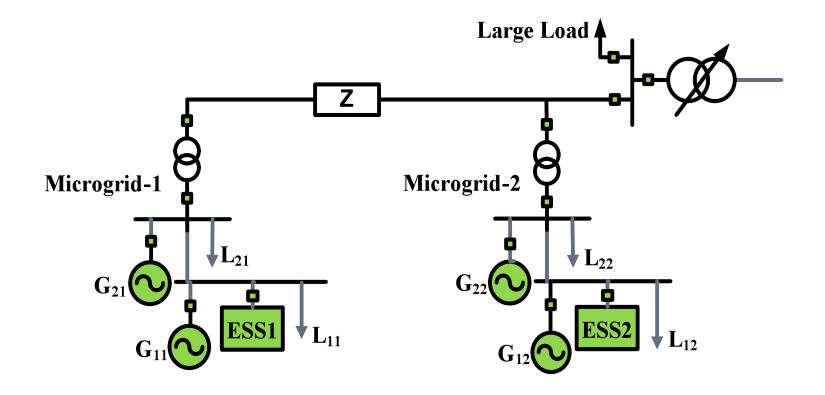
Incorporating Energy Storage


- * The Participation size of SCA in market in decided by storage systems status and mismatch ΔP in the systems.
- If $\Delta P > 0$, then

$$P_{D}(t) = \min \left(\Delta P, \sum_{i=1}^{B} P_{in}(i, t) \right)$$

• If $\Delta P < 0$, then

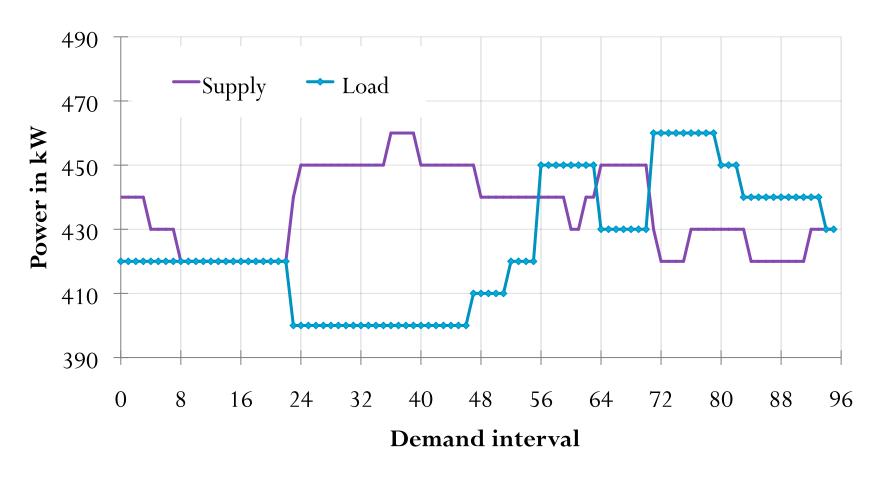
$$P_{S}(t) = \min \left(-\Delta P, \sum_{i=1}^{B} P_{out}(i, t)\right)$$


- $P_D(t)$ is the amount of power to be consumed by storage systems in kW,
- $P_S(t)$ is the amount of power to be supplied by the storage systems in kW
- *B is the total number of storages systems

Hierarchal agent architecture to incorporate DR and DS

Note: L_{xy} indicates load agent number 'x' of microgrid 'y'. For example L_{21} is second load agent of microgrid-1

Case Study



Case Study

- ❖ GBP is taken as 9 cents/kWh and GSP as 13.5 cents/kWh
- For market participation, shouts must be in [GBP,GSP]
- * Each of the load agents L_{21} and L_{22} are having some low priority loads.
- ❖ The storage systems are of 40kWh rating with an operating range of 12.5% to 100% of their rated capacity. These are initially filled to 12.5% of their rated capacity at a CSE of 11.25 cents/kWh

Case study data (96 intervals)

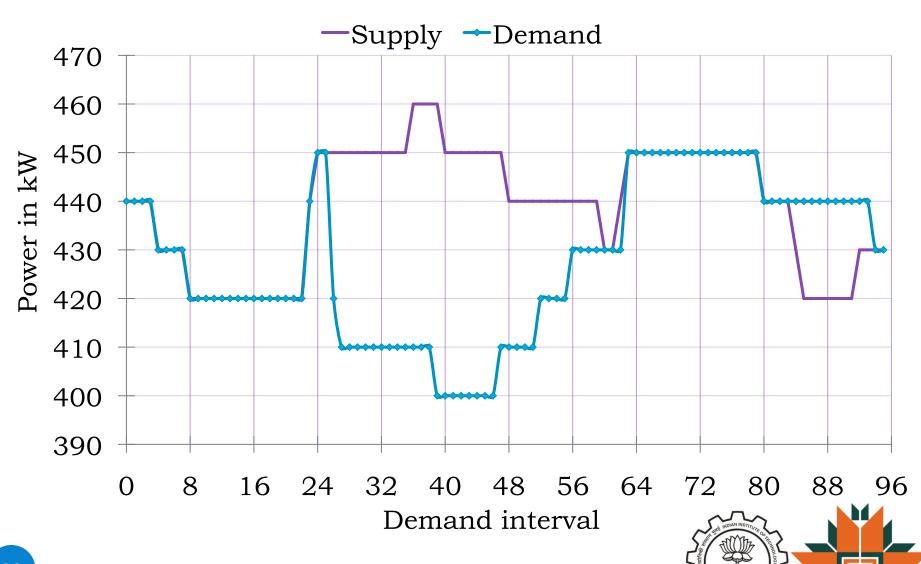
20

Source: Reliance Energy, & TERI

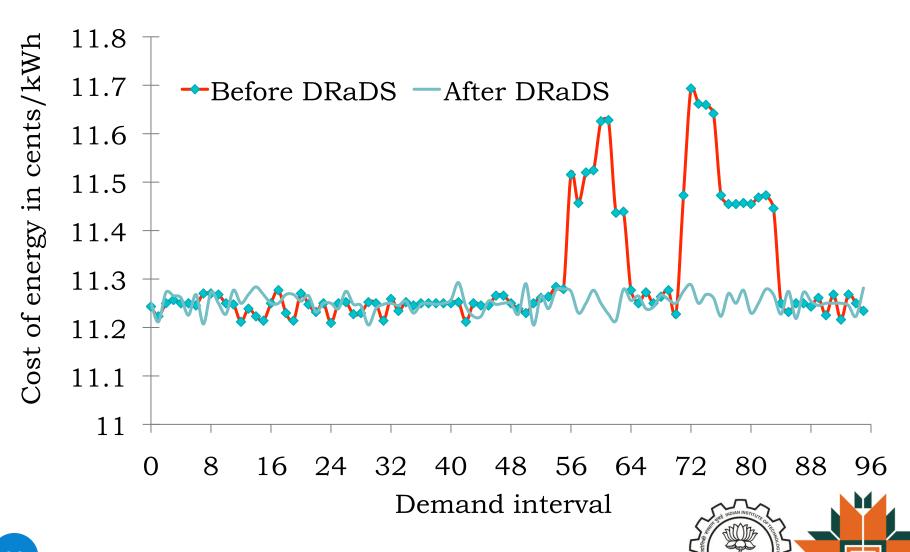
Market simulation

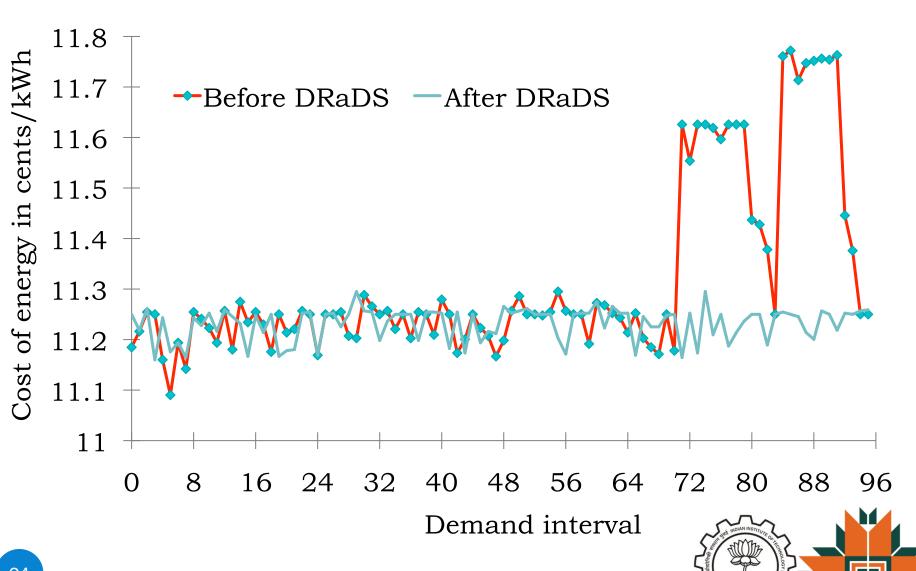
DR Options

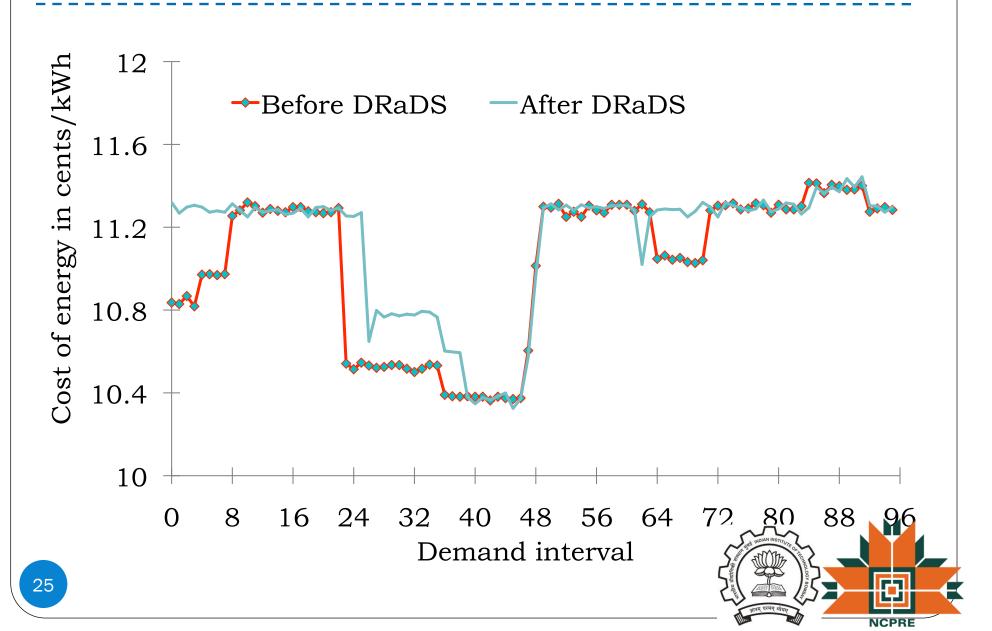
LA	SI	DL	ОТ	Size
L_{21}	56	71	8	20 kW
${\color{red}L_{22}}$	71	44#	12	10 kW

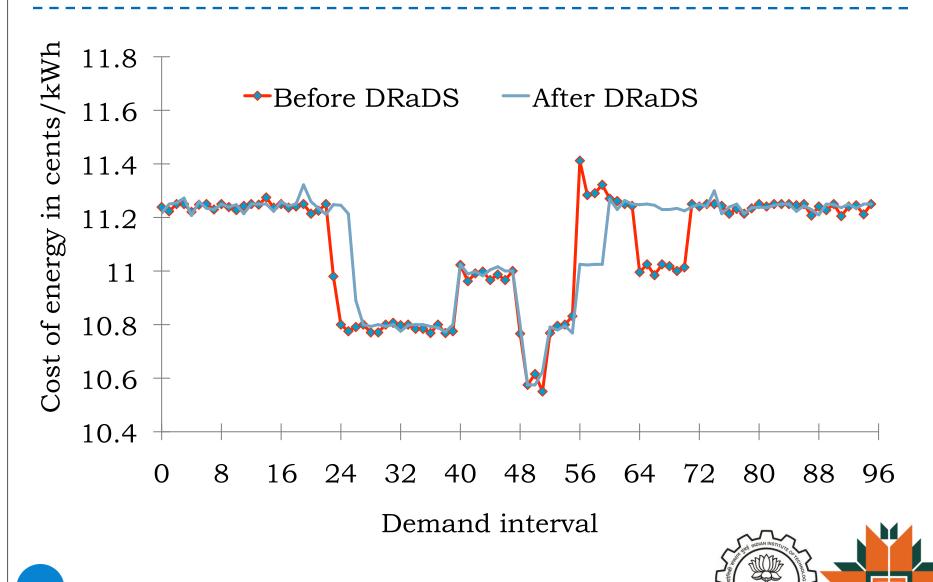

Optimal duration

LA	Start	End	Duration	Size
L_{21}	63	70	8	20 kW
L_{22}	27#	38#	12	10 kW


#: demand interval on the following day.


Market simulation


Trading history of L_{21}


Trading history of L_{22}

Trading history of G_{21}

Trading history of G₂₂

Conclusion

- An agent based real-time energy trading framework for distributed resource management in multiple interconnected microgrids using MAS is presented.
- Customers with low priority loads are allowed to participate in DR.
- * The concept of priority index, to fairly treat customers participating in DR based on size and number of times of participation, is introduced.
- * From the simulation results it is clear that the proposed framework is successful in reducing the peak demand.
- ❖ It is also found that the customers with high priority index get power supply at lower cost

Acknowledgements

2013 Microgrid Symposium, Santiago, Chile

Thank You

Ref: H.S.V.S.K. Nunna and S. Doolla, "Energy Management in Microgrids using Demand Response and Distributed Storage – A Multiagent Approach" *IEEE Transactions on Power Delivery*, Vol. 28, No. 2, April 2013, pp-939-947

Generation and Load data for µg-1

Block	G ₁₁ (kW)	G ₂₁ (kW)	L ₁₁ (kW)	L ₂₁ (kW)	Mismatch (kW) [#]
1	100	100	100	100	0
2	100	50	100	90	-4 0
3	100	50	100	90	-4 0
4	100	50	100	90	-4 0
5	100	70	100	50	+20
6	100	50	100	50	0
7	100	90	100	50	+40
8	80	90	100	50	+20
9	80	100	100	50	+30

#: '+' sign indicates surplus and '-' sign indicates deficit

Generation and Load data for µg-2

Block	G12 (kW)	G22 (kW)	L12 (kW)	L22 (kW)	Mismatch (kW) #
1	100	100	100	100	0
2	100	100	100	100	0
3	100	100	100	80	+20
4	100	100	100	70	+30
5	100	50	100	70	-20
6	100	100	100	50	+50
7	100	100	100	50	+50
8	100	80	100	100	-20
9	100	80	100	100	–20

#: '+' sign indicates surplus and '-' sign indicates deficit

*: Units for market share are in kW, Price in cents/kWh

Trading history of µg-1 w/o DRaDS

Blk.	Market	G11* (Price)	G21* (Price)	L11* (Price)	L21* (Price)
	Local	100/(11.20)	100/(11.23)	100/(11.23)	100/(11.20)
	Global	-	-	-	-
2	Local	100/(11.18)	50/(11.18)	100/(11.18)	50/(11.18)
2	Global	-	-	-	40/(13.5)
3	Local	100/(11.23)	50/(11.25)	100/(11.23)	50/(11.25)
3	Global	-	-	-	40/(12.80)
4	Local	100/(11.23)	50/(11.23)	100/(11.23)	50/(11.23)
4	Global	-	-	-	40/(12.06)
5	Local	100/(11.25)	50/(11.23)	100/(11.23)	50/(11.25)
5	Global	-	20/(11.20)	-	-
	Local	100/(11.20)	50/(11.20)	100/(11.20)	50/(11.20)
6	Global	-	-	-	-
7	Local	100/(11.27)	50/(11.23)	100/(11.27)	50/(11.23)
/	Global	-	40/(9.0)	-	-
8	Local	80/(11.20)	70/(11.20)	100/(11.20)	50/(11.20)
8	Global	-	20/(11.23)	-	-
9	Local	80/(11.18)	70/(11.18)	100/(11.18)	50/(11.18)
9	Global	-	30/(10.13)	-	-

Trading history of μg -2 w/o DRaDS

Blk.	Market	G ₁₂ * (Price)	G ₂₂ * (Price)	L ₁₂ * (Price)	L ₂₂ * (Price)
1	Local	100/(11.18)	100/(11.25)	100/(11.18)	100/(11.25)
1	Global	-	-	-	-
2	Local	100/(11.23)	100/(11.18)	100/(11.18)	100/(11.23)
2	Global	-	-	-	-
2	Local	100/(11.19)	80/(11.19)	100/(11.19)	80/(11.19)
3	Global	-	20/(12.11)	-	-
	Local	100/(11.20)	70/(11.23)	100/(11.20)	70/(11.23)
4	Global	-	30/(11.59)	-	-
_	Local	100/(11.27)	50/(11.18)	100/(11.18)	50/(11.27)
5	Global	-	-	-	20/(11.20)
	Local	100/(11.23)	50/(11.19)	100/(11.23)	50/(11.19)
6	Global	-	50/(9.0)	-	-
	Local	100/(11.27)	50/(11.23)	100/(11.27)	50/(11.23)
7	Global	-	50/(9.0)	-	-
0	Local	100/(11.18)	80/(11.18)	80/(11.18)	100/(11.18)
8	Global	-	-	20/(11.23)	-
	Local	100/(11.25)	80/(11.25)	80/(11.25)	100/(11.25)
33 9	Global	-	-	20/(10.69)	-

*: Units for market share are in kW, Price in cents/kWh

Trading history of µg-1 with DRaDS

Blk.	1		1 2		2		į	3		4		5		6			7		8	3	9	
Mkt.	Local	Global	Local	Global	Local	Global	Local	Global	Local	Global	Local	Global	DR	Local	Global	DR	Local	Global	Local	Global		
G ₁₁ *	100/11.23	ı	100/11.20	1	100/11.25	1	100/11.23	ı	100/11.27	ı	100/11.30	1	ı	100/11.30	I	ı	80/11.22	ı	80/11.18	1		
G ₂₁ *	100/11.23	1	50/11.18	1	50/11.25	ı	50/11.23	ı	50/11.20	20/11.23	50/11.30	1	1	50/11.20	20/9.45	20/11.25	70/11.22	20/11.25	70/11.18	30/11.26		
L ₁₁ *	100/11.23	ı	80/11.20	20/11.25	80/11.25	20/11.27	80/11.23	20/11.26	100/11.20	ı	100/11.30	1	ı	100/11.30	I	ı	100/11.22	ı	100/11.18	1		
L ₂₁ *	100/11.23	ı	70/11.18	1	70/11.25	1	70/11.23	ı	50/11.27	20/11.24	50/11.30	ı	20/11.25	50/11.20	I	20/11.25	50/11.22	ı	50/11.18	1		
SA ₁₁ *#	1	1	ı	- 10/11 25	1	1	1	10/11.26	1	_ 10/11 25	1	10/10.89	1	1	10/10.01	1	1	1	1	10/11.25		

*: Units for market share are in kW, Price in cents/kWh, #: '+' indicates filling and '--' indicates draining

Trading history of µg-2 with DRaDS

				<u> </u>				<u> </u>			7-5													
Blk.	1	1	2		3			4			5			6			7			8			9	
Mkt.	Local	Global	Local	Global	Local	Global	Local	Global	DR	Local	Global	DR	Local	Global	DR	Local	Global	DR	Local	Global	DR	Local	Global	DR
G12* (Price)	100/11.24	ı	100/11.23	ı	100/11.25	-	100/11.20	-	ı	100/11.27	ı	ı	100/11.23	ı	ı	100/11.27	ı	-	100/11.18	-	-	100/11.25	ı	ı
G22* (Price)	100/11.24	-	100/11.2	-	80/11.25	20/11.27	70/11.23	30/11.26	-	50/11.18	-	-	50/11.19	30/10.27	20/11.25	50/11.23	50/9.20	-	80/11.18	-	-	80/11.25	-	-
L12* (Price)	100/11.24	-	100/11.20	1	100/11.25	1	100/11.20	ı	ı	100/11.18	ı	ı	100/11.23	ı	ı	100/11.27	ı	ı	80/11.18	20/11.23	ı	80/11.25	20/11.26	ı
L22* (Price)	100/11.24	ı	100/11.23		80/11.25	-	70/11.23	-	-	50/11.27	20/11.24	ı	50/11.19	ı	1	50/11.23	1	1	100/11.18	1	-	100/11.25	ı	ı
SA ₁₂ *# (Price)	ı	ı	ı	-10/11.25	ı	ı	ı	-	-	ı	-10/11.24	-	-	10/10.94	ı	-	10/9.9	-	1	-	-	-	ı	ı

*: Units for market share are in kW, Price in cents/kWh, #: '+' indicates filling and '--' indicates draining